48 research outputs found

    Discrete-Event Analytic Technique for Surface Growth Problems

    Full text link
    We introduce an approach for calculating non-universal properties of rough surfaces. The technique uses concepts of distinct surface-configuration classes, defined by the surface growth rule. The key idea is a mapping between discrete events that take place on the interface and its elementary local-site configurations. We construct theoretical probability distributions of deposition events at saturation for surfaces generated by selected growth rules. These distributions are then used to compute measurable physical quantities. Despite the neglect of temporal correlations, our approximate analytical results are in very good agreement with numerical simulations. This discrete-event analytic technique can be particularly useful when applied to quantification problems, which are known to not be suited to continuum methods.Comment: 4 pages, 7 figures, published 17 Feb. 200

    Field-driven solid-on-solid interfaces moving under a stochastic Arrhenius dynamic: effects of the barrier height

    Full text link
    We present analytical results and kinetic Monte Carlo simulations for the mobility and microscopic structure of solid-on-solid (SOS) interfaces driven far from equilibrium by an external force, such as an applied field or (electro)chemical potential difference. The interfaces evolve under a specific stochastic dynamic with a local energy barrier (an Arrhenius dynamic), known as the transition dynamics approximation (TDA). We calculate the average height of steps on the interface, the average interface velocity, and the skewness of the interface as functions of the driving force and the height of the energy barrier. We find that the microscopic interface structure depends quite strongly on the barrier height. As the barrier becomes higher, the local interface width decreases and the skewness increases, suggesting increasing short-range correlations between the step heights.Comment: 6 pages, 5 figs. RevTe

    Magnetization Switching in Single-Domain Ferromagnets

    Full text link
    A model for single-domain uniaxial ferromagnetic particles with high anisotropy, the Ising model, is studied. Recent experimental observations have been made of the probability that the magnetization has not switched. Here an approach is described in which it is emphasized that a ferromagnetic particle in an unfavorable field is in fact a metastable system, and the switching is accomplished through the nucleation and subsequent growth of localized droplets. Nucleation theory is applied to finite systems to determine the coercivity as a function of particle size and to calculate the probability of not switching. Both of these quantities are modified by different boundary conditions, magnetostatic interactions, and quenched disorder.Comment: 4 pages, LaTeX, 2 figures, documentstyle{elsart} More fits and Mathematica notebook at http://www.scri.fsu.edu/~novotny/magnetism.html To appear in J.Mag.Mag.Mater. Conference Proceedings of 7th International Conference on Magnetism Cairns, Australia, August, 199

    Update statistics in conservative parallel discrete event simulations of asynchronous systems

    Full text link
    We model the performance of an ideal closed chain of L processing elements that work in parallel in an asynchronous manner. Their state updates follow a generic conservative algorithm. The conservative update rule determines the growth of a virtual time surface. The physics of this growth is reflected in the utilization (the fraction of working processors) and in the interface width. We show that it is possible to nake an explicit connection between the utilization and the macroscopic structure of the virtual time interface. We exploit this connection to derive the theoretical probability distribution of updates in the system within an approximate model. It follows that the theoretical lower bound for the computational speed-up is s=(L+1)/4 for L>3. Our approach uses simple statistics to count distinct surface configuration classes consistent with the model growth rule. It enables one to compute analytically microscopic properties of an interface, which are unavailable by continuum methods.Comment: 15 pages, 12 figure

    Microstructure and velocity of field-driven Ising interfaces moving under a soft stochastic dynamic

    Full text link
    We present theoretical and dynamic Monte Carlo simulation results for the mobility and microscopic structure of 1+1-dimensional Ising interfaces moving far from equilibrium in an applied field under a single-spin-flip ``soft'' stochastic dynamic. The soft dynamic is characterized by the property that the effects of changes in field energy and interaction energy factorize in the transition rate, in contrast to the nonfactorizing nature of the traditional Glauber and Metropolis rates (``hard'' dynamics). This work extends our previous studies of the Ising model with a hard dynamic and the unrestricted SOS model with soft and hard dynamics. [P.A. Rikvold and M. Kolesik, J. Stat. Phys. 100, 377 (2000); J. Phys. A 35, L117 (2002); Phys. Rev. E 66, 066116 (2002).] The Ising model with soft dynamics is found to have closely similar properties to the SOS model with the same dynamic. In particular, the local interface width does not diverge with increasing field, as it does for hard dynamics. The skewness of the interface at nonzero field is very weak and has the opposite sign of that obtained with hard dynamics.Comment: 19 pages LaTex with 7 imbedded figure

    Computational Lattice-Gas Modeling of the Electrosorption of Small Molecules and Ions

    Full text link
    We present two recent applications of lattice-gas modeling techniques to electrochemical adsorption on catalytically active metal substrates: urea on Pt(100) and (bi)sulfate on Rh(111). Both involve the specific adsorption of small molecules or ions on well-characterized single-crystal electrodes, and they provide a particularly good fit between the adsorbate geometry and the substrate structure. The close geometric fit facilitates the formation of ordered submonolayer adsorbate phases in a range of electrode potential positive of the range in which an adsorbed monolayer of hydrogen is stable. In both systems the ordered-phase region is separated from the adsorbed- hydrogen region by a phase transition, signified in cyclic voltammograms by a sharp current peak. Based on data from {\it in situ\/} radiochemical surface concentration measurements, cyclic voltammetry, and scanning tunneling micro- scopy, and {\it ex situ\/} Auger electron spectroscopy and low-energy electron diffraction, we have developed specific lattice-gas models for the two systems. These models were studied by group-theoretical ground-state calcu- lations and numerical Monte Carlo simulations, and effective lattice-gas inter- action parameters were determined so as to provide agreement with experiments.Comment: 17 pp. uuencoded postscript, FSU-SCRI-94C-9

    Scaling analysis of a divergent prefactor in the metastable lifetime of a square-lattice Ising ferromagnet at low temperatures

    Full text link
    We examine a square-lattice nearest-neighbor Ising quantum ferromagnet coupled to dd-dimensional phonon baths. Using the density-matrix equation, we calculate the transition rates between configurations, which determines the specific dynamic. Applying the calculated stochastic dynamic in Monte Carlo simulations, we measure the lifetimes of the metastable state. As the magnetic field approaches H/J=2|H|/J=2 at low temperatures, the lifetime prefactor diverges because the transition rates between certain configurations approaches zero under these conditions. Near H/J=2|H|/J=2 and zero temperature, the divergent prefactor shows scaling behavior as a function of the field, temperature, and the dimension of the phonon baths. With proper scaling, the simulation data at different temperatures and for different dimensions of the baths collapse well onto two master curves, one for H/J>2|H|/J>2 and one for H/J<2|H|/J<2.Comment: published versio

    Parallelization of a Dynamic Monte Carlo Algorithm: a Partially Rejection-Free Conservative Approach

    Full text link
    We experiment with a massively parallel implementation of an algorithm for simulating the dynamics of metastable decay in kinetic Ising models. The parallel scheme is directly applicable to a wide range of stochastic cellular automata where the discrete events (updates) are Poisson arrivals. For high performance, we utilize a continuous-time, asynchronous parallel version of the n-fold way rejection-free algorithm. Each processing element carries an lxl block of spins, and we employ the fast SHMEM-library routines on the Cray T3E distributed-memory parallel architecture. Different processing elements have different local simulated times. To ensure causality, the algorithm handles the asynchrony in a conservative fashion. Despite relatively low utilization and an intricate relationship between the average time increment and the size of the spin blocks, we find that for sufficiently large l the algorithm outperforms its corresponding parallel Metropolis (non-rejection-free) counterpart. As an example application, we present results for metastable decay in a model ferromagnetic or ferroelectric film, observed with a probe of area smaller than the total system.Comment: 17 pages, 7 figures, RevTex; submitted to the Journal of Computational Physic

    Simulations of metastable decay in two- and three-dimensional models with microscopic dynamics

    Full text link
    We present a brief analysis of the crossover phase diagram for the decay of a metastable phase in a simple dynamic lattice-gas model of a two-phase system. We illustrate the nucleation-theoretical analysis with dynamic Monte Carlo simulations of a kinetic Ising lattice gas on square and cubic lattices. We predict several regimes in which the metastable lifetime has different functional forms, and provide estimates for the crossovers between the different regimes. In the multidroplet regime, the Kolmogorov-Johnson-Mehl-Avrami theory for the time dependence of the order-parameter decay and the two-point density correlation function allows extraction of both the order parameter in the metastable phase and the interfacial velocity from the simulation data.Comment: 14 pages, 4 figures, submitted to J. Non-Crystalline Solids, conference proceeding for IXth International Conference on the Physics of Non-Crystalline Solids, October, 199

    Microstructure and Velocity of Field-Driven SOS Interfaces: Analytic Approximations and Numerical Results

    Full text link
    The local structure of a solid-on-solid (SOS) interface in a two-dimensional kinetic Ising ferromagnet with single-spin-flip Glauber dynamics, which is driven far from equilibrium by an applied field, is studied by an analytic mean-field, nonlinear-response theory [P.A. Rikvold and M. Kolesik, J. Stat. Phys. 100, 377 (2000)] and by dynamic Monte Carlo simulations. The probability density of the height of an individual step in the surface is obtained, both analytically and by simulation. The width of the probability density is found to increase dramatically with the magnitude of the applied field, with close agreement between the theoretical predictions and the simulation results. Excellent agreement between theory and simulations is also found for the field-dependence and anisotropy of the interface velocity. The joint distribution of nearest-neighbor step heights is obtained by simulation. It shows increasing correlations with increasing field, similar to the skewness observed in other examples of growing surfaces.Comment: 18 pages RevTex4 with imbedded figure
    corecore